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SUMMARY
Individuals with obesity due to pathogenic heterozygous melanocortin 4 receptor (MC4R) mutations can be
treated efficiently with the glucagon-like peptide-1 receptor agonist (GLP-1 RA) liraglutide. Here, we report
the effect of 16 weeks of liraglutide 3 mg/day treatment in a woman with morbid obesity and type 2 diabetes
(T2D) due to homozygous pathogenicMC4Rmutation. The bodyweight losswas 9.7 kg, similar toweight loss
in heterozygousMC4Rmutation carriers and common obesity. In addition, the treatment led to clinically rele-
vant decreases in fasting glucose, triglycerides, systolic blood pressure, and normalization of glucose toler-
ance.We conclude that liraglutide reduces body weight and blood glucose levels in hetero- and homozygous
MC4R mutation carriers. This serves as proof-of-concept that MC4Rs are not required for the body weight
and glucose lowering effects of GLP-1 RAs and that liraglutidemay be used as part of the treatment of obesity
and T2D due to MC4R mutations.
INTRODUCTION

Heterozygous mutations in the melanocortin 4 receptor (MC4R)

gene are the most common cause of monogenic obesity, with

a prevalence ranging from 2% to 6% in juvenile-onset obesity

populations.1–5 We have previously shown that individuals with

obesity caused by heterozygous pathogenic MC4R mutations

can be treated efficiently with liraglutide, a glucagon-like pep-

tide-1 receptor agonist (GLP-1 RA).5

GLP-1 is a gut hormone secreted from endocrine cells in

the gastrointestinal tract.6 Upon food intake, GLP-1 stimulates

insulin secretion and regulates appetite by affecting central

appetite-regulating areas of the brain.7–9 The central appe-

tite-regulating pathways associated with GLP-1 RA-mediated

anorexia are incompletely known, but GLP-1 receptors

(GLP-1Rs) have been identified in numerous areas of the brain

associated with regulation of food intake, including the hypo-

thalamus. In the hypothalamus, it has been suggested that

the GLP-1 RA liraglutide may act through GLP-1Rs present

on anorexigenic proopiomelanocortin (POMC) and cocaine-
This is an open access article under the CC BY-N
and amphetamine-regulated transcript (CART) neurons,

which, upon stimulation, release a-melanocyte-stimulating

hormone (MSH), interacting with MC4 receptors and produc-

ing satiety.10 In this scenario, functional MC4Rs would be a

prerequisite for conveying liraglutide-mediated anorexia. How-

ever, it was also suggested that liraglutide may act through a

local gamma-aminobutyric acid (GABA) neuron, inhibiting the

orexigenic agouti-related peptide (AgRP)/neuropeptide Y

(NPY) neurons.10

The importance of the MC4R in appetite and thus body weight

regulation is evident by the obese phenotype of the MC4R�/�

knockout mice, whereas mice with heterozygous mutations,

MC4R�/+, display an intermediary phenotype between that of

homozygous and wild-type mice.11 In humans, homozygous

carriers of pathogenicMC4Rmutations also displaymore severe

obesity than heterozygous carriers, probably reflecting the fact

that heterozygous carriers have retained some signaling capac-

ity of their MC4Rs.12

We have previously shown that heterozygous individuals with

pathogenic MC4R mutations and matched control participants
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Table 1. Data from a Woman with Homozygous MC4R Mutation

from before to after 4 Months of Daily Liraglutide Injections

Variables Week 0 Week 16 Difference

Weight (kg) 152.2 142.5 �9.7

Height (m) 1.64 1.64 N/A

BMI (kg/m2) 56.6 53.0 �3.6

Systolic blood pressure (mmHg) 122 112 �10

Diastolic blood pressure (mmHg) 78 76 �2

Pulse (beats/min) 83 67 �16

Fasting plasma glucose (mmol/L) 6.3 5.0 �1.3

Fasting HbA1C (mmol/mol) 54 49 �5

Fasting serum insulin (pmol/L) 66 48 �18

Fasting C-peptide (pmol/L) 1,152 1,099 �53

Triglycerides (mmol/L) 2.41 1.78 �0.63

Total fat mass (kg) 75.5 71.2 �4.3

Total lean mass (kg) 76.9 71.3 �5.6

Total fat (%) 49.6 49.9 0.3
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lost exactly the same amount of body weight, suggesting that

the appetite-inhibiting effect of GLP-1 is independent of the

MC4R.5 In order to examine the complete independence of

the MC4R in the appetite-inhibiting effect of GLP-1, we as-

sessed the effect of the GLP-1 RA liraglutide on body weight

in a homozygous carrier with a pathogenic MC4R mutation

with no MC4Rs.

RESULTS

Patient Characteristics
The case, a 51-year-old woman, suffers from a wide range of

co-morbidities including type 2 diabetes (T2D) (diagnosed in

1999), hypertension (diagnosed in 2018), hypercholesterolemia,

rheumatic disease (treated with prednisolone 10 mg once

daily), as well as depression and borderline personality disor-

der, all for which she is being treated pharmaceutically. For a

complete drug list, see Table 1. The patient had a normal birth

weight (3,500 g) but describes that, from early childhood, she

experienced extreme hunger and, at the age of 20, weighed

140 kg with a height of 164 cm. Her highest weight was

186 kg. Obesity runs in the family, both on the paternal and

maternal side. No other known inherited diseases run in the

family, including T2D.

In 2006, the patient underwent a gastric bypass operation and

lost approximately 40 kg. However, the patient returned to her

preoperative weight within a few years to her current weight sta-

tus, which was her weight when entering this project.

The patient was screened for MC4R mutations while she was

attending a diabetes clinic and volunteered to enter a biobank

project for which plasma and DNA samples were collected.

The patient has had many former weight loss attempts without

success. Based on our previous study, which showed success-

ful treatment with the GLP-1 RA liraglutide for heterozygous car-

riers with pathogenic MC4R mutations,5 we contacted the pa-

tient, who volunteered to participate in the present study with

liraglutide treatment.
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Genetic Characteristics
The patient is a homozygousmutation carrier of the T allele of the

rs747681609 variant. The C-to-T allele mutation changes the

165th amino acid of the MC4R protein from arginine to glutamine

(p.Arg165Gln). The variant is in silico predicted to be pathogenic

and/or deleterious (e.g., by SIFT and PolyPhen), and it has a

PHRED-scaled combined annotation dependent depletion

(CADD) score of 33, predicting its deleteriousness to be above

the 1,000th quartile of SNP variants in the genome. ClinVar cate-

gorizes the variant as likely pathogenic for obesity. Several

in vitro validations document the pathogenic function of the

variant.13,14 Thus, the pathogenic MC4 Arg165Gln receptor is

not present on the cell surface and does not bind its ligand

a-MSH.14 The mutation is very rare and reported in only 7 of

123,034 individuals in the Genome Aggregation Database

(gnomAD), where 6 of these are of European origin and the last

carrier is East Asian.15 The variant has previously been

reported in relation to extreme and early onset obesity, mostly

in Europeans,2,4,12,16 but also in Pima Indians.17

Anthropometrics and Blood Analyses Before and After
Liraglutide Treatment
During 16weeks of liraglutide treatment, the patient lost a total of

9.7 kg (from 152.2 kg to 142.5 kg). BMI was reduced by 3.6 units

(from 56.6 kg/m2 to 53.0 kg/m2). The weight loss was achieved

within the initial 8 weeks of treatment, with no additional weight

loss between week 8 to week 16. Fasting plasma glucose was

reduced by 1.3 mmol/L (from 6.3 to 5.0 mmol/L), and fasting

insulin levels decreased by 18 pmol/L (from 66 to 48 pmol/L).

Hemoglobin A1c (HbA1c) decreased by 5 mmol/mol (from 54

to 49 mmol/mol). Triglyceride levels decreased by 0.6 mmol/L

(from 2.4 to 1.8 mmol/L).

The patient also exhibited improvements in postprandial

glucose, insulin, and C-peptide values. Accordingly, incremental

area under the curve (iAUC) for glucose decreased from

439 mmol/L 3 min to 428 mmol/L 3 min, iAUC for insulin

increased from 6,217 pmol/L 3 min to 12,027 pmol/L 3 min,

and iAUC for C-peptide increased from 103,623 mmol/mol 3

min to 130,277 mmol/mol 3 min.

Before treatment, the patient had impaired glucose tolerance

(defined as a plasma glucose between 8.7 to 11.1 mmol/L after a

2-horalglucose tolerance test [OGTT]),withapostprandialglucose

concentration after 2 h of 8.7 mmol/L, which was reduced to

6.4mmol/Lafter treatmentand thusnormalizedtoglucosetolerant.

Finally, systolic blood pressurewas reduced by 10mmHg (from

122 to 112 mmHg), and diastolic blood pressure was reduced

from 78 to 75 mmHg. Pulse also decreased by 16 bpm (from 83

to 67 bpm). Fat mass was reduced by 4.3 kg, and lean body

mass decreased by 5.6 kg, but there was no net change in fat per-

centage (49.6% before and 49.9% after liraglutide treatment).

The patient experienced mild gastrointestinal side effects in

the form of nausea and stomach pain during the first 4 weeks

of treatment but did not experience any side effects during the

remaining 12 weeks. The patient reported that she fell less hun-

gry and more satiated during the first 8 weeks of treatment, but

this effect was reduced, although still present to some extent,

during the last 8 weeks of treatment. For all data, please see

Table 1 and Figure 1.



Figure 1. Weight and Metabolism Data from

a Woman Homozygous for Pathogenic

MC4R Mutation

(A–E) Body weight (A), fasting and postprandial

levels of glucose (B), C-peptide (C), insulin (D), and

triglycerides (E) before and after 16 weeks of

treatment with a GLP-1 RA (liraglutide).
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DISCUSSION

In this case story, we report weight loss during 16 weeks of

treatment with liraglutide in a woman with a previous gastric

bypass opaeration and morbid obesity due to a complete

loss of function of homozygous MC4R mutation. The weight

loss (9.7 kg) was equivalent to 3.6 BMI units and stabilized

during the last 2 months of treatment. The weight loss

response is comparable to the effect of liraglutide in common

obesity.5,18–20 In common obesity, both lean and fat mass is

lost during weight loss.21 In the present study, the losses in

lean body mass and fat mass were almost equal (4.3 kg fat

mass and 5.6 kg lean body mass). This is in contrast to

our previously published article, where we observed a

decrease of ~1 kg in lean body mass and ~5 kg in fat mass

in heterozygous MC4R mutation carriers and control partici-

pants alike.5
Cell Re
The treatment led to reductions in fast-

ing glucose, fasting insulin, systolic blood

pressure, and triglyceride levels, although

the patient was within normal limits when

the study began. Furthermore, postpran-

dial glucose was reduced, and insulin

and C-peptide responses increased

immediately in response to glucose but

were reduced after 150 min compared

to before treatment. Thus, the insulin

response improved with liraglutide treat-

ment and the patient no longer exhibited

impaired glucose tolerance.

The patient underwent a roux-en-y

gastric bypass (RYGB) in 2006, which led

to a transient weight loss of ~40 kg.

Because increases in endogenous GLP-

1 levels are considered a key component

inRYGB-inducedweight loss,22 onecould

askwhether exogenousGLP-1 in the form

of liraglutide would work in this patient,

when the assumed increase in endoge-

nous GLP-1 after RYGB only worked tran-

siently. However, after RYGB,meal inges-

tion elicits a rapid and short-lasting rise in

endogenous GLP-1 response, spanning

only about 90min.23,24 In contrast, with lir-

aglutide treatment, there is a 24-h main-

tained exposure, whichwill lower the drive

to ingest foods, including small meals and

snacks, which might not produce marked

endogenous GLP-1 responses even after
RYGB. It is also possible that the acylated liraglutide molecule

may access regions of the brain that are not normally reached

by endogenous (and intact) GLP-1.10 Thus, it is probably impor-

tant to distinguish between the actions of endogenous GLP-1

and exogenously administered GLP-1 in the form of a GLP-1

RA such as liraglutide.

Conclusions
We conclude that 16 weeks of treatment with 3.0 mg of GLP-1

RA liraglutide resulted in a weight loss of 9.7 kg in a woman

with severe morbid obesity and T2D due to a homozygous mu-

tation in theMC4R as well as reductions in fasting and postpran-

dial glucose levels, leading to normal glucose tolerance. This

finding supports the notion that MC4Rs are not required for the

appetite-inhibiting effects of liraglutide. Furthermore, our find-

ings support the use of GLP-1 RAs in the treatment of obesity

and T2D caused by MC4R mutations.
ports Medicine 1, 100006, April 21, 2020 3
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Strengths and Limitations
The results from this case report are limited by the fact that we

were only able to obtain data from one patient. A larger group

of homozygous carriers would have been preferable. However,

these patients are extremely rare. Accordingly, with our previous

article on heterozygous carriers with pathogenic MC4R muta-

tion,5 together with this case report, there is good support for a

conclusion that GLP-1 RAs act independently of the MC4R in in-

dividuals with severe obesity due to both heterozygous and ho-

mozygous pathogenic mutations in the MC4R.
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KEY RESOURCES TABLE
Reagent and Resource Source Identifier

Biological samples

Plasma and serum Homozygous muation carrier H-1-2013-093/ NCT02082496

Genomic DNA Homozygous muation carrier H-1-2013-093/ NCT02082496

Critical Commercial Assays

QIAamp DNA Blood mini kits QIAGEN, Germany RRID:SCR_008539

Dynal Myone Streptavidin C1 magnetic beads Invitrogen, USA RRID:SCR_008410

Software and Algorithms

Prism 5.0 GraphPad, USA RRID:SCR_002798

Covaris sonicator, SonoLab Software, USA RRID:SCR_016302

Other

2100 Bioanalyzer Agilent, USA RRID:SCR_018043
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Signe S.

Torekov, torekov@sund.ku.dk. Materials availability statement: this study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject details
The case story involves a 51 years old woman homozygous for pathogenic MC4R mutation.

Ethical issues
The project and associated biobank were approved by the ethical committee in Copenhagen (reference number: H-1-2013-093) and

the study was performed in accordance with the Helsinki Declaration II. Participation was voluntary and the participant could at any

time retract her consent to participate. ClinicalTrials.gov: NCT02082496.

METHOD DETAILS

Genotyping
The variant was genotyped through deep sequencing of the MC4R on a custom target region capture sequencing platform.25 The

methods for DNA extraction, target region capture, and NGS have previously been extensively described.25 The final captured

DNA libraries were sequenced using the Illumina HiSeq2000 Analyzer as paired-end 90 bp reads (following the manufacturer’s stan-

dard cluster generation and sequencing protocols). The depth at the variant position of the rs747681609 variant was 221 and all but

two reads mapped to call the non-reference T-allele. The PRED-scaled genotype quality for the site was the maximal supported by

the VCF format. The genotype was called using the GATK pipeline.26

Study drug
Liraglutide was administered as FlexPen devices (Saxenda�, Novo Nordisk A/S, Bagsvaerd, Denmark) by subcutaneous injection in

the abdomen or thigh. Dosing was initiated at 0.6 mg daily, increasing to 3.0 mg daily over a 5 week period (0.6 mg, 1.2 mg, 1.8 mg,

2.4 mg and 3.0 mg per week) continuing until 16 weeks of treatment. The liraglutide injection period was not accompanied by any

lifestyle counselling, diet or exercise program.

Visits and measurements
Before and after 16weeks of liraglutide treatment the patient met in themorning after an overnight fast in an outpatient clinic. Morning

weight was measured in light indoor clothes (weight model: Tanita WB-110MA, Tokyo, Japan), height, waist-and hip circumference
e1 Cell Reports Medicine 1, 100006, April 21, 2020
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(measured with non-elastic tape), blood pressure and pulse (Omron M6, Omron Healthcare Co. Ltd., Kyoto, Japan) was measured

and BMI calculated as the weight in kilos over the height in meters squared (kg/m2).

Oral glucose tolerance test (OGTT)
A cannula was inserted in an antecubital vein and fasting blood samples were drawn at time point �10, �5 and 0 (for measurement

of plasma glucose, plasma HbA1C, serum insulin, plasma C-peptide, and plasma triglycerides) prior to ingestion of 75 g glucose

dissolved in 125mLwater. Subsequently, blood sampleswere drawn 15, 30, 60, 90, 120, 150 and 180minutes after glucose ingestion

for measurements of postprandial plasma glucose, plasma C-peptide, serum insulin and plasma triglycerides.

Dual energy X-ray absorptiometry (DEXA)
Total fat mass and total lean body mass (fat free mass) were assessed by DEXA (Hologic Discovery A, Massachusetts, USA), and

performed by trained personnel.

Plasma Analyses
Plasma glucose was measured with the glucose oxidase technique (YSI model 2300 STAT Plus; Yellow Springs Instruments, Yellow

Springs, OH). HbA1C was measured with a high performance liquid chromatography (HPLC) technique (Tosoh Bioscience GmbH,

Griesheim, Germany).

QUANTIFICATION AND STATISTICAL ANALYSES

Total and incremental areas under the curve (AUC) were calculated in GraphPad Prism version 5.00 for Windows, GraphPad Soft-

ware, San Diego California USA, using the trapezoidal method. All data (N = 1) can be found in Figure 1 and Table 1.

DATA AND CODE AVAILABILITY

The published article includes all datasets generated or analyzed during this study.
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